Efficient Gait-based Gender Classification through Feature Selection
نویسندگان
چکیده
Apart from human recognition, gait has lately become a promising biometric feature also useful for prediction of gender. One of the most popular methods to represent gait is the well-known Gait Energy Image (GEI), which conducts to a high-dimensional Euclidean space where many features are irrelevant. In this paper, the problem of selecting the most relevant GEI features for gender classification is addressed. In particular, an ANOVA-based algorithm is used to measure the discriminative power of each GEI pixel. Then, a binary mask is built from the few most significant pixels in order to project a given GEI onto a reduced feature pattern. Experiments over two large gait databases show that this method leads to similar recognition rates to those of using the complete GEI, but with a drastic dimensionality reduction. As a result, a much more efficient gender classification model regarding both computing time and storage requirements is obtained.
منابع مشابه
Gait-based Gender Classification Considering Resampling and Feature Selection
Abstract—Two intrinsic data characteristics that arise in many domains are the class imbalance and the high dimensionality, which pose new challenges that should be addressed. When using gait for gender classification, benchmarking public databases and renowned gait representations lead to these two problems, but they have not been jointly studied in depth. This paper is a preliminary study t...
متن کاملGait analysis for classification
This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distrib...
متن کاملGait Analysis for Classification
This thesis describes a representation of gait appearance for the purpose of person identification and classification. This gait representation is based on simple localized image features such as moments extracted from orthogonal view video silhouettes of human walking motion. A suite of time-integration methods, spanning a range of coarseness of time aggregation and modeling of feature distrib...
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملGender Classification in Human Gait Using Support Vector Machine
We describe an automated system that classifies gender by utilising a set of human gait data. The gender classification system consists of three stages: i) detection and extraction of the moving human body and its contour from image sequences; ii) extraction of human gait signature by the joint angles and body points; and iii) motion analysis and feature extraction for classifying gender in the...
متن کامل